A study on the conditioning of finite element equations with arbitrary anisotropic meshes via a density function approach

نویسندگان

  • Lennard Kamenski
  • Weizhang Huang
چکیده

The linear finite element approximation of a general linear diffusion problem with arbitrary anisotropic meshes is considered. The conditioning of the resultant stiffness matrix and the Jacobi preconditioned stiffness matrix is investigated using a density function approach proposed by Fried in 1973. It is shown that the approach can be made mathematically rigorous for general domains and used to develop bounds on the smallest eigenvalue and the condition number that are sharper than existing estimates in one and two dimensions and comparable in three and higher dimensions. The new results reveal that the mesh concentration near the boundary has less influence on the condition number than the mesh concentration in the interior of the domain. This is especially true for the Jacobi preconditioned system where the former has little or almost no influence on the condition number. Numerical examples are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL DECOMPOSITION OF FINITE ELEMENT MESHES VIA K-MEDIAN METHODOLOGY AND DIFFERENT METAHEURISTICS

In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the cor...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

An Efficient Co Finite Element Approach for Bending Analysis of Functionally Graded Ceramic-Metal Skew Shell Panels

In this article, the prominence has been given to study the influence of skew angle on bending response of functionally graded material shell panels under thermo-mechanical environment. Derivation of governing equations is based on the Reddy’s higher-order shear deformation theory and Sander’s kinematic equations. To circumvent the problem of C1 continuity requirement coupled with the finite el...

متن کامل

Conditioning of Finite Element Equations

Bounds are developed for the condition number of the linear system resulting from the finite element discretization of an anisotropic diffusion problem with arbitrary meshes. These bounds are shown to depend on three major factors: a factor representing the base order corresponding to the condition number for a uniform mesh, a factor representing the effects of the mesh M -nonuniformity (mesh n...

متن کامل

Physically-Based Surface Texture Synthesis Using a Coupled Finite Element System

This paper describes a stable and robust finite element solver for physically-based texture synthesis over arbitrary manifold surfaces. Our approach solves the reaction-diffusion equation coupled with an anisotropic diffusion equation over surfaces, using a Galerkin based finite element method (FEM). This method avoids distortions and discontinuities often caused by traditional texture mapping ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013